全球和本地环境显着有助于显着对象检测(SOD)中预测的完整性。不幸的是,现有的方法仍然难以生成完整的预测,并提供细节。常规方法中有两个主要问题:首先,对于全球环境,高级CNN的编码器功能无法有效地捕获长期依赖性,从而导致不完整的预测。其次,将地面真相的采样降低以适应预测的规模,因为在插值或合并过程中丢失了地面真相细节,因此会引起不准确性。因此,在这项工作中,我们开发了一个基于变压器的网络,并构成了分支机构的监督任务,以明确学习全局上下文信息。此外,我们采用从超级分辨率(SR)的像素随机散发,将预测重塑为地面真理的大小,而不是反向。因此,地面真理中的细节没有触及。此外,我们开发了一个两阶段的上下文改进模块(CRM)来融合全局上下文,并自动在预测中找到和完善本地细节。拟议的网络可以根据生成的全局和本地上下文(因此被命名为自我精制的变压器)(自我改革)指导和纠正自身。五个基准数据集的广泛实验和评估结果证明了网络的出色性能,我们实现了最新的技术。
translated by 谷歌翻译
Referring image segmentation aims at localizing all pixels of the visual objects described by a natural language sentence. Previous works learn to straightforwardly align the sentence embedding and pixel-level embedding for highlighting the referred objects, but ignore the semantic consistency of pixels within the same object, leading to incomplete masks and localization errors in predictions. To tackle this problem, we propose CoupAlign, a simple yet effective multi-level visual-semantic alignment method, to couple sentence-mask alignment with word-pixel alignment to enforce object mask constraint for achieving more accurate localization and segmentation. Specifically, the Word-Pixel Alignment (WPA) module performs early fusion of linguistic and pixel-level features in intermediate layers of the vision and language encoders. Based on the word-pixel aligned embedding, a set of mask proposals are generated to hypothesize possible objects. Then in the Sentence-Mask Alignment (SMA) module, the masks are weighted by the sentence embedding to localize the referred object, and finally projected back to aggregate the pixels for the target. To further enhance the learning of the two alignment modules, an auxiliary loss is designed to contrast the foreground and background pixels. By hierarchically aligning pixels and masks with linguistic features, our CoupAlign captures the pixel coherence at both visual and semantic levels, thus generating more accurate predictions. Extensive experiments on popular datasets (e.g., RefCOCO and G-Ref) show that our method achieves consistent improvements over state-of-the-art methods, e.g., about 2% oIoU increase on the validation and testing set of RefCOCO. Especially, CoupAlign has remarkable ability in distinguishing the target from multiple objects of the same class.
translated by 谷歌翻译
Several works have proven that finetuning is an applicable approach for debiasing contextualized word embeddings. Similarly, discrete prompts with semantic meanings have shown to be effective in debiasing tasks. With unfixed mathematical representation at the token level, continuous prompts usually surpass discrete ones at providing a pre-trained language model (PLM) with additional task-specific information. Despite this, relatively few efforts have been made to debias PLMs by prompt tuning with continuous prompts compared to its discrete counterpart. Furthermore, for most debiasing methods that alter a PLM's original parameters, a major problem is the need to not only decrease the bias in the PLM but also to ensure that the PLM does not lose its representation ability. Finetuning methods typically have a hard time maintaining this balance, as they tend to violently remove meanings of attribute words. In this paper, we propose ADEPT, a method to debias PLMs using prompt tuning while maintaining the delicate balance between removing biases and ensuring representation ability. To achieve this, we propose a new training criterion inspired by manifold learning and equip it with an explicit debiasing term to optimize prompt tuning. In addition, we conduct several experiments with regard to the reliability, quality, and quantity of a previously proposed attribute training corpus in order to obtain a clearer prototype of a certain attribute, which indicates the attribute's position and relative distances to other words on the manifold. We evaluate ADEPT on several widely acknowledged debiasing benchmarks and downstream tasks, and find that it achieves competitive results while maintaining (and in some cases even improving) the PLM's representation ability. We further visualize words' correlation before and after debiasing a PLM, and give some possible explanations for the visible effects.
translated by 谷歌翻译
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
translated by 谷歌翻译
The task of Compositional Zero-Shot Learning (CZSL) is to recognize images of novel state-object compositions that are absent during the training stage. Previous methods of learning compositional embedding have shown effectiveness in closed-world CZSL. However, in Open-World CZSL (OW-CZSL), their performance tends to degrade significantly due to the large cardinality of possible compositions. Some recent works separately predict simple primitives (i.e., states and objects) to reduce cardinality. However, they consider simple primitives as independent probability distributions, ignoring the heavy dependence between states, objects, and compositions. In this paper, we model the dependence of compositions via feasibility and contextuality. Feasibility-dependence refers to the unequal feasibility relations between simple primitives, e.g., \textit{hairy} is more feasible with \textit{cat} than with \textit{building} in the real world. Contextuality-dependence represents the contextual variance in images, e.g., \textit{cat} shows diverse appearances under the state of \textit{dry} and \textit{wet}. We design Semantic Attention (SA) and generative Knowledge Disentanglement (KD) to learn the dependence of feasibility and contextuality, respectively. SA captures semantics in compositions to alleviate impossible predictions, driven by the visual similarity between simple primitives. KD disentangles images into unbiased feature representations, easing contextual bias in predictions. Moreover, we complement the current compositional probability model with feasibility and contextuality in a compatible format. Finally, we conduct comprehensive experiments to analyze and validate the superior or competitive performance of our model, Semantic Attention and knowledge Disentanglement guided Simple Primitives (SAD-SP), on three widely-used benchmark OW-CZSL datasets.
translated by 谷歌翻译
Deep learning (DL) methods have been widely applied to anomaly-based network intrusion detection system (NIDS) to detect malicious traffic. To expand the usage scenarios of DL-based methods, the federated learning (FL) framework allows multiple users to train a global model on the basis of respecting individual data privacy. However, it has not yet been systematically evaluated how robust FL-based NIDSs are against existing privacy attacks under existing defenses. To address this issue, we propose two privacy evaluation metrics designed for FL-based NIDSs, including (1) privacy score that evaluates the similarity between the original and recovered traffic features using reconstruction attacks, and (2) evasion rate against NIDSs using Generative Adversarial Network-based adversarial attack with the reconstructed benign traffic. We conduct experiments to show that existing defenses provide little protection that the corresponding adversarial traffic can even evade the SOTA NIDS Kitsune. To defend against such attacks and build a more robust FL-based NIDS, we further propose FedDef, a novel optimization-based input perturbation defense strategy with theoretical guarantee. It achieves both high utility by minimizing the gradient distance and strong privacy protection by maximizing the input distance. We experimentally evaluate four existing defenses on four datasets and show that our defense outperforms all the baselines in terms of privacy protection with up to 7 times higher privacy score, while maintaining model accuracy loss within 3% under optimal parameter combination.
translated by 谷歌翻译
促性腺营养蛋白释放激素受体(GNRH1R)是治疗子宫疾病的有前途的治疗靶标。迄今为止,在临床研究中可以使用几个GNRH1R拮抗剂,而不满足多个财产约束。为了填补这一空白,我们旨在开发一个基于学习的框架,以促进有效,有效地发现具有理想特性的新的口服小型分子药物靶向GNRH1R。在目前的工作中,首先通过充分利用已知活性化合物和靶蛋白的结构的信息,首先提出了配体和结构组合模型,即LS-Molgen,首先提出了分子生成的方法,该信息通过其出色的性能证明了这一点。比分别基于配体或结构方法。然后,进行了A中的计算机筛选,包括活性预测,ADMET评估,分子对接和FEP计算,其中约30,000个生成的新型分子被缩小到8,以进行实验合成和验证。体外和体内实验表明,其中三个表现出有效的抑制活性(化合物5 IC50 = 0.856 nm,化合物6 IC50 = 0.901 nm,化合物7 IC50 = 2.54 nm对GNRH1R,并且化合物5在基本PK属性中表现良好例如半衰期,口服生物利用度和PPB等。我们认为,提议的配体和结构组合结合的分子生成模型和整个计算机辅助工作流程可能会扩展到从头开始的类似任务或铅优化的类似任务。
translated by 谷歌翻译
样本分配在现代对象检测方法中起着重要的作用。但是,大多数现有的方法都依靠手动设计来分配正 /负样本,这些样本并未明确建立样本分配和对象检测性能之间的关系。在这项工作中,我们提出了一种基于高参数搜索的新型动态样本分配方案。我们首先将分配给每个地面真理的正样本的数量定义为超参数,并采用替代优化算法来得出最佳选择。然后,我们设计一个动态的样本分配过程,以动态选择每个训练迭代中的最佳阳性数量。实验表明,所得的HPS-DET在不同对象检测基线的基线上带来了改善的性能。此外,我们分析了在不同数据集之间和不同骨架之间转移的高参数可重复使用性,以进行对象检测,这表现出我们方法的优势和多功能性。
translated by 谷歌翻译
在恶劣天气下降雪场景的图像恢复是一项艰巨的任务。雪图像具有复杂的降解,并在干净的图像上混乱,改变了干净的图像的分布。以前基于CNN的方法由于缺乏特定的全球建模能力,因此在恢复雪场景中完全恢复了雪场的挑战。在本文中,我们将视觉变压器应用于从单个图像中去除积雪的任务。具体而言,我们建议沿通道拆分的并行网络体系结构分别执行本地功能改进和全局信息建模。我们利用频道洗牌操作来结合其各自的优势以增强网络性能。其次,我们提出了MSP模块,该模块利用多规模的AVGPOOL来汇总不同大小的信息,并同时对多头自我注意力进行多尺度投影自我注意,以提高模型在不同规模下降下的表示能力。最后,我们设计了一个轻巧,简单的本地捕获模块,可以完善模型的本地捕获能力。在实验部分,我们进行了广泛的实验以证明我们方法的优越性。我们比较了三个雪场数据集上的先前清除方法。实验结果表明,我们的方法超过了更少的参数和计算的最新方法。在CSD测试数据集上,我们实现了1.99dB和SSIM 0.03的实质增长。在SRR和SNOW100K数据集上,与Transweather方法相比,我们还增加了2.47dB和1.62dB,在SSIM中提高了0.03。在视觉比较部分中,我们的MSP形式比现有方法获得了更好的视觉效果,证明了我们方法的可用性。
translated by 谷歌翻译
在冬季场景中,在雪下拍摄的图像的降解可能非常复杂,其中雪降解的空间分布因图像而异。最近的方法采用深层神经网络,直接从雪图像中恢复清洁的场景。但是,由于复杂的雪降解差异导致悖论,实时实现可靠的高清图像是一个巨大的挑战。我们开发了一种新型有效的金字塔网络,具有非对称编码器架构,用于实时高清图像。我们提出的网络的一般思想是通过功能中的多尺度特征流充分利用多尺度的特征流。与以前最先进的方法相比,我们的方法实现了更好的复杂性 - 性能取舍,并有效地处理了高清和超高清图像的处理困难。在三个大规模图像上进行的广泛实验表明,我们的方法超过了所有最新方法,既有数量又定性地超过了大幅度,从而将PSNR度量从31.76 dB提高到34.10 dB,升至34.10 dB。 SRRS测试数据集上的28.29 dB至30.87 dB。
translated by 谷歌翻译